JS web frameworks benchmark – Round 4

Here’s another update for the js web framework benchmark. This time the benchmark has seen lots of contributions:

  • Dominic Gannaway updated and optimized inferno
  • Boris Kaul added the kivi framework
  • Chris Reeves contributed the edge version of ractive
  • Michel Weststrate updated react-mobX
  • Gianluca Guarini updated the riot benchmark
  • Gyandeep Singh added mithril 1.0-alpha
  • Leon Sorokin contributed domvm
  • Boris Letocha added bobril
  • Jeremy Danyow rewrote the aurelia benchmark
  • Filatov Dmitry updated the vidom benchmark
  • Dan Abramov, Mark Struck, Baptiste Augrain and many more…

Thanks to all of you for contributing!

… 

 

JS web frameworks benchmark – Round 1

In this blog post I’ll try to compare the performance a few popular javascript frameworks. Measuring the performance of browser content can be challenging and I’m prepared for harsh replies.

One approach to measure the performance would be to use browser tools like the chrome timeline, which reveals exact timings, but has the disadvantage of being a manual and time consuming process and yielding only a single sample.

At first I tried automated benchmarking tools such as Benchpress or protractor-perf, but I didn’t really understand the results and thus decided to roll my own selenium webdriver benchmark. I wrote an additional blog entry to describe this approach. To put it short it measures the duration from the start of a dom click event to the end of the repainting of the dom by parsing the performance log. To reduce sampling artifacts it takes the average of runnig each benchmark 12 times ignoring the two worst results.

Screenshot_Angular2

… 

 

C, Java and Javascript numeric benchmark and a big surprise

In older posts on this blog I showed that Java’s performance can come pretty close to C – at least for simple numeric benchmarks. Android’s Dalvik VM is often blamed for its bad performance, though things have improved since the introduction of a JIT. With all that HTML5 vs. native debate and the ongoing Javascript hype I though it would be cool to run some benchmarks and compare the performance of Java, Javascript and C on my notebook, an iPhone 4S and a Google Nexus 7.

I decided to run a mandelbrot benchmark first. This time I wanted to see a nice colored mandelbrot set and found a Javascript version on http://www.atopon.org/mandel/# . I decided to bring that source code to Java and C (no SSE intrinsics, just plain C code to support all platforms). Here are the results showing the duration in milliseconds for each language and platform:Mandelbrot_CJJS

  • On the MacBook Pro the performance is within a narrow range. C wins with 19 msecs, Java is second with 21 msecs and Javascript is amazingly quick with 22 msecs.
  • On the iPhone the Javascript Nitro Engine takes 113% more time that the C version. Nevertheless almost factor 2 isn’t too bad for a dynamic language.
  • The most surprising result was on the Google Nexus 7. C was fastest, the Java code on the Davlik VM was 144% slower and the V8 Javascript engine achieved to beat the Dalvik VM significantly. The first computation was 65% slower and after that warm up subsequent computations were only 42% slower than C. Once again: V8 is much faster than Dalvik and easily within a range of 2 to C!

A single benchmark doesn’t prove anything, so why not add another well known benchmark. I took NBody (as I always did on this blog ;-)).

The results for NBody confirmed those results. For C I took the fastest plain C implementation from the Computer Language Benchmarks Game. Once again the y-axis shows the duration (this time in seconds).NBody_CJJS

  • On the MacBook Pro Javascript was 44% slower than C (Java only 1.5%).
  • The Javascript Nitro VM on my iPhone 4S was 99% slower than C.
  • On the Nexus 7 there’s once again the same image: Java is 106% slower than C, Javascript only 43%. Amazing.

For simple numeric benchmarks the performance of Javascript is simply astonishing. On the MacBook Pro Javascript is incredibly close to the performance of C and Java. On the iPhone Javascript was within a range of factor 2.1. For me it was very surprising to see V8 on Android being able to beat Java on the Davlik VM by a large margin.

Fine print:

  • Slower and faster usually cause headaches in benchmarks (There a nice paper about that http://hal.inria.fr/docs/00/73/92/37/PDF/percentfaster-techreport.pdf). I sticked with the elapsed time, such that e.g. 42% slower means that the factor of the durations was 1.42.
  • On the MacBook Pro C was compiled with clang using -O3 -fomit-frame-pointer -march=native -mfpmath=sse -msse3 for x64. Java was Oracle Hotspot 1.8.0-ea-b87 on 64 bit (thus C2 aka Server Hotspot). Chrome was 28.0.1493.0, but the 32 bit version. I tried to compile V8 myself, but both the x86 and x64 custom built V8 were significantly slower than Chrome so I stick with Chrome.
  • On the iPhone I used a release configuration using clang with (among others) -O3 -arch armv7
  • The Google Nexus 7 runs Android 4.2.2, Chrome 26.0.1410.58. C was compiled with -march=armv6 -marm -mfloat-abi=softfp -mfpu=vfp -O3.